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Neuroanatomical differences attributable to aging and gender have been well documented, and these differences may be associated with
differences in behaviors and cognitive performance. However, little is known about the dynamic organization of anatomical connectivity
within the cerebral cortex, which may underlie population differences in brain function. In this study, we investigated age and sex effects
on the anatomical connectivity patterns of 95 normal subjects ranging in age from 19 to 85 years. Using the connectivity probability
derived from diffusion magnetic resonance imaging tractography, we characterized the cerebral cortex as a weighted network of con-
nected regions. This approach captures the underlying organization of anatomical connectivity for each subject at a regional level.
Advanced graph theoretical analysis revealed that the resulting cortical networks exhibited “small-world” character (i.e., efficient infor-
mation transfer both at local and global scale). In particular, the precuneus and posterior cingulate gyrus were consistently observed as
centrally connected regions, independent of age and sex. Additional analysis revealed a reduction in overall cortical connectivity with age.
There were also changes in the underlying network organization that resulted in decreased local efficiency, and also a shift of regional
efficiency from the parietal and occipital to frontal and temporal neocortex in older brains. In addition, women showed greater overall
cortical connectivity and the underlying organization of their cortical networks was more efficient, both locally and globally. There were
also distributed regional differences in efficiency between sexes. Our results provide new insights into the substrates that underlie
behavioral and cognitive differences in aging and sex.

Introduction
Age-related neuroanatomical changes have been well recognized
and are thought to account for the cognitive declines in normal
aging (Park and Reuter-Lorenz, 2009). The anatomical connec-
tivity disturbance induced by white matter (WM) degeneration
in aging would conceivably result in declines of functional inte-
gration between systems of brain areas. In particular, O’Sullivan
et al. (2001) have proposed that cognitive deficits in aging emerge
from the cortical “structural disconnection,” in addition to the
dysfunction of specific gray matter (GM) areas.

Neuroanatomical differences between men and women
have also been repeatedly observed (Sowell et al., 2007). For
example, the male brain is larger but has a lower GM percent-
age at a population level (Leonard et al., 2008). As well as the
neuroanatomical differences, sex differences in behaviors and
cognitive performance have been well demonstrated. Statisti-
cally, men perform better in visuospatial perception processing,
whereas women have advantages in language (Hamilton, 2008).
Thus, there is the possibility that specific gender differences in

cognitive performance arise from gender differences in the brain
neuroanatomy (Gur et al., 1999).

To date, little is known about the differences of the organiza-
tional patterns of anatomical connectivity in aging and sex. Graph
theoretical analysis provides a unique tool to reveal intrinsic at-
tributes of the connectivity patterns in a complex network/
graph and is being translated to explore brain organization
(Bullmore and Sporns, 2009; He et al., 2009a). Such an anatom-
ical network captures the structural substrate for distributed
functional interactions between brain areas, forming the basis of
cognitive processing (Sporns et al., 2005). Cortical network anal-
ysis across a population therefore provides a novel insight into
the cortical organizational dynamics that may underlie cognitive
variability in aging and sex.

Functional and morphological networks of human brains
have been explored using a variety of structural and functional
imaging methods (Achard et al., 2006; Bassett et al., 2006, 2008;
He et al., 2007, 2008, 2009b; Stam et al., 2007). Recent advances in
diffusion magnetic resonance imaging (MRI) and tractography
methods have allowed for the noninvasive mapping of cortico-
cortical anatomical connections, facilitating the construction of
anatomical network at a macroscale (Hagmann et al., 2007;
Iturria-Medina et al., 2008). Specifically, we have developed a
population-based cortical network with diffusion tensor imag-
ing (DTI) tractography (Gong et al., 2009). In this study, we
extended the population-based unweighted network of the
previous study to allow for an individual-based weighted net-
work, using sophisticated probabilistic tractography. Impor-
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tantly, the weighted network is specific to the individual,
which therefore facilitates the network comparisons across the
population.

To our knowledge, the present study is the first to explore the
age- and sex-related dynamics of the anatomical network across a
population. We focus on the network efficiency that characterizes
how well the information is communicated within the cerebral
cortex. Particularly, we hypothesized that the cortical network
efficiency as well as the regional efficiency of selective cortical
regions are different in aging and sex. Given the cognitive de-
clines in older people, we further expected that the network effi-
ciency would decrease with age.

Materials and Methods
Subjects
The present study included data from 95 normal subjects (males, 47;
females, 48; age, 19 – 85 years). All subjects were recruited for the
International Consortium of Brain Mapping (ICBM) dataset at Mon-
treal Neurological Institute (MNI) and have no history of neurolog-
ical and psychiatric disorders. Informed consent was obtained from
each subject, and our protocol was approved by the Research Ethics
Committee of the Montreal Neurological Institute and Hospital.

MRI acquisition
All scans were performed on the same Siemens Sonata 1.5 T MRI scan-
ner. Diffusion MRI was acquired by using a single-shot echo planar
imaging-based sequence with sensitivity encoding and a parallel imaging
factor of 2.0: coverage of the whole brain; 2.5 mm slice thickness with no
interslice gap; 60 axial slices; repetition time (TR), 8000 ms; echo time
(TE), 94 ms; 30 optimal nonlinear diffusion weighting directions with
b � 1000 s/mm 2 (Jones et al., 1999) and five additional images without
diffusion weighting (i.e., b � 0 s/mm 2); average, 3; acquisition matrix,
96 � 96; field of view (FOV), 240 � 240 mm 2. Three-dimensional T1-
weighted images with high resolution were obtained by a three-
dimensional gradient echo sequence with following parameters: 1 mm
slice thickness with no interslice gap; 117 sagittal slices; TR, 22 ms; TE, 9.2
ms; flip angle, 30°; 1 average; acquisition matrix, 256 � 256; FOV, 256 �
256 mm 2.

The construction of weighted cortical networks
Step 1: cortical parcellation. In this study, we used the automated anatom-
ical labeling (AAL) template (Tzourio-Mazoyer et al., 2002) to parcellate
the entire cerebral cortex into 78 cortical regions (39 for each hemi-
sphere), each representing a node of the cortical network. For each sub-
ject, the parcellation was conducted in the diffusion MRI native space.
First, the T1-weighted image was coregistered to the b0 image in the
diffusion MRI space using a linear transformation. The transformed T1-
weighted image was then nonlinearly mapped to the T1 template of
ICBM152 in MNI space (Collins et al., 1994). The resulting transforma-
tion was inversed and further applied to warp the AAL mask from
MNI space to the diffusion MRI native space in which the discrete
labeling values were preserved by using a nearest-neighbor interpo-
lation method. We further refined the AAL mask by removing the
WM voxels in the raw mask if they are not adjacent to GM voxels. This
parcellation procedure has been applied previously (Gong et al.,
2009). In this study, the linear and nonlinear registrations were im-
plemented using local MNI registration tools embedded in CIVET
pipeline (Ad-Dab’bagh et al., 2006).

Step 2: interregional connectivity probability derived from diffusion MRI
probabilistic tractography. The diffusion-weighted images were coregis-
tered to a reference volume (i.e., b0 image) using an affine transforma-
tion for the correction of head motion and eddy current induced image
distortion. After this preprocessing, the local probability distribution of
fiber direction at each voxel was estimated (Behrens et al., 2003a). Here,
we chose the computation model allowing for automatic estimation of
two fiber directions within each voxel, which can significantly improve
the tracking sensitivity of nondominant fiber populations in the human
brain (Behrens et al., 2007).

To estimate the connectivity probability, probabilistic tractography
was applied by sampling 5000 streamline fibers per voxel. For each sam-
pled fiber, a sample direction was first drawn from the local direction
distribution at the seed voxel, and then we proceeded a fixed distance of
0.5 mm along this direction to a new position and continued to draw a
sample direction from the local distribution at this new position. This
propagation procedure continued until the brain surface was reached or
the path loops back on itself. The resulting fibers therefore account for
the uncertainty in all local fiber orientations. The connectivity probabil-
ity from the seed voxel i to another voxel j was defined by the number of
fibers passing through voxel j divided by the total number of fibers sam-
pled from voxel i (Behrens et al., 2007). This idea could be extended from
the voxel level to the regional level. For a seed cortical region, 5000*n
fibers were sampled (5000 fibers for each voxel), where n is the number of
voxels in this region. The number of fibers passing through a given region
divided by 5000*n is calculated as the connectivity probability from the
seed region to this given region. The connectivity derived from this prob-
abilistic tractography has been well recognized and applied in neurosci-
entific studies (e.g., connectivity-based parcellation) (Behrens et al.,
2003b; Johansen-Berg et al., 2004).

In the present study, each cortical region was selected as the seed
region and its connectivity probability to each of the other 77 regions was
calculated. Notably, the probability from i to j is not necessarily equiva-
lent to the one from j to i because of the tractography dependence on the
seeding location. However, these two probabilities are highly correlated
across the cerebral cortex for all subjects (the least Pearson r � 0.70, p �
10 �50). Thus, we defined the undirectional connectivity probability Pij

between region i and j by averaging these two probabilities. We imple-
mented the voxel-by-voxel diffusion model estimation, probabilistic
tractography, and the calculation of regional connectivity probability
using FSL (http://www.fmrib.ox.ac.uk/fsl/) and in-house Matlab
scripts.

Because of the probabilistic nature of the tractography in our study,
the vast majority of regional pairs were assigned a nonzero probability.
The resultant nonsparse network is opposed to the classic anatomical
view supporting sparse connectivity patterns within the human brain. To
address this, we removed those obviously spurious connections that have
extremely small probabilities by applying a thresholding. Specifically,
two cortical regions were considered unconnected if the mean connec-
tivity probability across subjects was �2 SDs below a given threshold
[e.g., mean (Pij) � 2std (Pij) � threshold]. For a given threshold value,
this scheme leads to an identical number and position of the connections
within the cerebral cortex across subjects. Since there is no definitive
choice for a single threshold, we chose a thresholding range between 0.01
and 0.1 at intervals of 0.0025 (resulting in 37 threshold intervals) (Fig. 1).
This range maximizes the inclusion of real regional connections while
minimizing the number of false connections and therefore is biologically
plausible. The corresponding range of network sparsity (8�27%) is sim-
ilar to previous brain networks studies (Achard and Bullmore, 2007; Liu
et al., 2008). As is described later, we then generated an integral summary
statistic to compare the network efficiency across the entire threshold
range.

Step 3: the weighted network/graph. To construct a weighted network/
graph, we need to define a distance/weight associated with each edge. In
our case, high connectivity probability between cortical regions should
be interpreted as short distances in a graph. Specifically, we computed
wij � 1 � Pij as the distance/weight between cortical region i and j, as used
in previous literature (Achard and Bullmore, 2007). It is important to
note that the distance/weight here does not correspond to the physical
length of the white matter pathway linking the cortical regions, or the
physical distance between cortical regions in the real spatial space. [No-
tably, they are related to some extent. See supplemental Figure 1 (avail-
able at www.jneurosci.org as supplemental material).] For each subject, a
78 � 78 symmetric weighted cortical network/graph W was constructed,
representing the anatomical organization of cerebral cortex.

The weighted network properties
Weighted network efficiency and small worldness. Many real complex net-
works have been demonstrated to have “small-world” properties (i.e.,
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characteristic path length L less than a regular lattice and local clustering
C greater than a random graph) (Watts and Strogatz, 1998). The small-
world concept was originally defined for unweighted networks, but
has been recently generalized to weighted networks by introducing
the concept of network efficiency (Latora and Marchiori, 2001). The
local clustering C and characteristic path length L of unweighted net-
works conceptually correspond to the local and global efficiency of
weighted networks, respectively (Latora and Marchiori, 2003). However,
these two parameter sets are not computationally equivalent and there-
fore could provide different results.

Specifically, the inverse of the harmonic mean of shortest path length
(dij) between each pair of nodes within the network is defined as the
network global efficiency Eglob as follows:

Eglob�G	 �
1

N�N � 1	 �
i
j�G

1

dij

.

Furthermore, the local efficiency for each node could be calculated as the
global efficiency of the neighborhood subgraph Gi of the node. The local
efficiency represents how much the complex network is fault tolerant,
indicating how well the information is communicated within the neigh-
bors of a given node when this node is removed. The local efficiencies
across all nodes within the network are further averaged to estimate the
network local efficiency Eloc as follows:

E loc�G	 �
1

N �
i�G

Eglob �Gi	.

In terms of network efficiency, a small world network is the one with high
Eglob and Eloc (i.e., very efficient both in global and local information
transfer) (Latora and Marchiori, 2003). The network efficiency has a
number of conceptual and technical advantages, compared with the orig-
inal small-world parameters (i.e., local clustering C and characteristic
path length L) (Latora and Marchiori, 2003; Achard and Bullmore,
2007). Practically, a weighted network could be categorized as small
world if Eglob is slightly less but Eloc is much greater than a matched
random network. Here, the matched random networks were generated
using the random rewiring procedure described by Maslov and Sneppen
(2002) that preserves the degree distribution. In particular, we retained
the weight of each edge during the rewiring procedure such that the
weight distribution of the entire network was preserved. For comparison,

we generated 100 of these random networks per subject and calculated
their mean Eglob and Eloc as described previously.

Weighted network cost. The concept of network cost was originally
defined by Latora and Marchiori (2003) to measure the expense for
building up the connecting elements of a graph. Typically, the cost of a
connection is proportional to its distance/weight, and therefore the over-
all cost of a graph is derived by taking the sum of distance/weight [i.e.,
cost � sum (wij)]. In the present study, higher values for distance/weight
mean lower probability of fiber connection between the pairs of cortical
nodes. Thus, a higher network cost corresponds to a lower overall con-
nectivity within the cerebral cortex.

Of note, the network cost has an impact on the efficiency: networks
with a higher cost tend to have lower network efficiency. To normalize
for the cost effect, we divided the weights of a cortical network by its cost.
The resultant weighted network captures the essential underlying orga-
nization of the raw weighted network since the contrast among weights
remains the same but has a fixed unit cost and therefore is corrected for
cost. Thus, the efficiency variability among the cost-normalized weighted
networks represents the intrinsic organizational difference of the cortical
networks across individuals. Specifically, in our study, the calculation of
cost and the network normalization were performed after the threshold-
ing procedure and separately for each sparsity level. Unless otherwise
specified, the efficiency in this study refers to cost-normalized efficiency.

Regional efficiency. The regional efficiency (Ereg) for a given node i is
defined as the inverse of mean harmonic shortest path length between
this node and all other nodes in the network (Achard and Bullmore,
2007) as follows:

Ereg�i	 �
1

N � 1 �
i
j�G

1

dij

.

Likewise, we will focus on the regional efficiency of each node that is
derived from the cost-normalized weighted network. This measure
quantifies the importance of the nodes for the communication within the
network and high regional efficiency implies the hub roles.

Statistical analysis
The objective of this study is to assess the relationship between the net-
work properties (i.e., efficiency and cost) and age or sex. Since each of
these network metrics has been computed for a specific sparsity range, a
summary network metric is necessary. Here, we estimated the integrals of

Figure 1. The schematic image processing for the construction of the cortical weighted network. A, The AAL template masks in diffusion MRI space for one subject. Each color represents a cortical
region. B, Connectivity probability using diffusion MRI tractography. The yellow–red color represents the resulting probability (yellow � red) from the left precuneus (marked as blue) to the other
voxels. C, The regional probability matrix from the probabilistic tractography for the same subject. Each row or column represents one cortical region. The order of regions in the matrix is the same
as in our previous study (Gong et al., 2009). For more details, see Materials and Methods.
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each metric curve over the range of the sparsity (�8�27%) as the sum-
mary metric. Such integrated metrics mathematically correspond to the
areas under the metric curve (Fig. 2 B, C) and have been applied in recent
brain networks studies (Achard and Bullmore, 2007; Bassett et al., 2008;
He et al., 2008). A general linear model (GLM) was then conducted to test
age and sex effects on the network metrics. As reported previously (Leo-
nard et al., 2008), brain size showed highly significant sex difference in
our population (two-sample t test, p � 10 �10). To remove the brain size
effect, we included it as a covariate in the model. The interaction term
between age and sex was first included in the model but showed no
significant effects. Thus, this interaction term was excluded in our final

model (Engqvist, 2005). The GLM analysis was
first performed on the overall network metrics
(Eloc and Eglob), and the age or sex effect was
regarded as significant if the one-tailed p �
0.05. This analysis was then applied to the re-
gional efficiency (Ereg) of all 78 nodes respec-
tively, and a false discovery rate (FDR)
procedure was performed at a q value of 0.05
to correct for the multiple comparisons
(Genovese et al., 2002).

Results
Small worldness of the human
cortical networks
The characteristics of our weighted net-
works are specific to the choice of the
probability threshold. If the threshold is
high, the network will be more sparsely
connected and have low number of edges
(Fig. 2A). The selected thresholds (i.e.,
0.01�0.1) resulted in the networks over
the sparsity range of 8�27% that is similar
to previous literature (Achard and Bull-
more, 2007; Liu et al., 2008). All of the
resulting networks are fully connected
with no disconnected nodes. The local
and global efficiencies of the cortical net-
works as well as those of the matched ran-
dom networks are demonstrated as a
function of the network sparsity (Fig. 2).
As expected, the network efficiency in-
creases when there are more edges in the
network (i.e., less sparse). Compared with
the matched random networks, the corti-
cal networks have a much higher local ef-
ficiency but similar global efficiency over
the entire range of the sparsity, suggesting
small-world character of the weighted
cortical networks (Fig. 2). This small-
world character indicates that cortical an-
atomical networks of human brain, based
on probabilistic tractography, are very ef-
ficient for both global and local informa-
tion transfer. Specifically, high global
efficiency reflects effective interactions or
rapid transfers of information between
and across remote cortical regions that are
believed to form the basis of cognitive
processes, whereas high local efficiency
implies the modularized information
processing among nearby regions. This
underlying architecture of anatomical
connectivity forms the substrates of the
intrinsic small-world topology of func-

tional or morphological networks in human brains (Stam, 2004;
Achard et al., 2006; He et al., 2007).

Age effect on the cost and efficiency of cortical networks
Using the GLM analysis, we found a significant age correlation
(positive; t(91) � 1.66; p � 0.05) with the network cost over the
entire range of the sparsity (Fig. 3A), suggesting a decline of over-
all cortical connectivity with age. We also observed significant age
effect (negative; t(91) � �1.66; p � 0.05) on local efficiency across
the majority of the sparsity range (Fig. 3A). However, there was

Figure 2. The small worldness of the cortical weighted networks. The weighted network is sparser as the probability threshold
increases (A). The selected threshold range of 0.01�0.1 approximately corresponds to a sparsity range of 8�27%. The cortical
network has much higher local efficiency than the matched random network (B) but similar global efficiency (C) over the entire
sparsity range, indicating small-world character. The error bar indicates 1 SD of the network efficiency across subjects. Statistically,
there are significant differences in both local and global efficiency between cortical and matched random networks, over the entire
sparsity range.

Figure 3. The age effect on the cost and efficiency of the cortical networks. A, Plots of the T statistic of the age effect on the
network cost, local efficiency, and global efficiency as a function of the sparsity. Significant positive age effect on the cost was found
over the entire sparsity. Local efficiency but not global efficiency showed significant age effect over the majority of the sparsity
range. In accordance, significant age effect was observed on both the integrated network cost (B) and integrated local efficiency
(C), but the integrated global efficiency showed no significant age effect (D). Notably, all results here were calculated after
adjusting for the effects of brain size and sex, using a general linear model.
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no significant age effect on the global effi-
ciency over a wide range. Consistently, the
integrated results showed a significant age
correlation with the integrated cost (pos-
itive; t(91) � 2.30; p � 0.01) (Fig. 3B) and
integrated local efficiency (negative; t(91)

� �2.36; p � 0.01) (Fig. 3C), but nonsig-
nificant age effect on the integrated
global efficiency (t(91) � �1.10; p �
0.14) (Fig. 3D). Notably, the measured
efficiencies in the present study were
obtained from the cost-normalized net-
works; therefore, the efficiency variabil-
ity between subjects represents the
intrinsic organizational difference of the
cortical networks, rather than reflecting
any differences in wiring cost. Interest-
ingly, the three parameters of cortical an-
atomical networks (e.g., integrated cost,
local efficiency, and global efficiency)
were strongly correlated with one another
across subjects (supplemental Fig. 2,
available at www.jneurosci.org as supple-
mental material).

Sex effect on the cost and efficiency of
cortical networks
As shown in Figure 4A, the GLM analysis
demonstrated a significant sex difference
(women � men; t(91) � �1.66; p � 0.05)
in the network cost over the entire range
of sparsity, indicating a higher overall
connectivity in women. In addition, sig-
nificant sex effects (women � men; t(91) �
1.66; p � 0.05) were found for both local
and global efficiency over a wide range of sparsity (Fig. 4A).
There were significant sex differences in the three integrated met-
rics: integrated cost (women � men; t(91) � �2.58; p � 0.01)
(Fig. 4B), integrated local efficiency (women � men; t(91) � 1.83;
p � 0.04) (Fig. 4C) and integrated global efficiency (women �
men; t(91) � 2.19; p � 0.02) (Fig. 4D). Notably, these results were
obtained after factoring out the effect of brain size. Thus, it is
unlikely that the sex differences in the cortical networks result
from their difference in brain size (two-sample t test, p � 10�10).

Regional efficiency of individual cortical nodes
The regional efficiency of each node measures its connectivity to
all other nodes of the network. Likewise, the regional efficiency
across all nodes increases when the network is less sparse (sup-
plemental Fig. 3, available at www.jneurosci.org as supplemental
material). In this study, we specifically reported the results of
the integrated regional efficiency for each node in the network.
The regional efficiency specific to the sparsity showed similar
relationships with the age and sex factors.

Centrally connected regions across population
High regional efficiency implies hub/core roles in a network
(Achard and Bullmore, 2007). The 78 regional nodes were ranked
in descending order of regional efficiency in Figure 5. Notably,
the bilateral precuneus (PUN) and right posterior cingulate gyrus
(PCG) consistently have the highest regional efficiency, regard-
less of age and sex. This observation is quite compatible with a
recent study from Hagmann et al. (2008), who identified a struc-

tural core within posterior medial and parietal cortex in the cor-
tical anatomical network (Hagmann et al., 2008). Moreover, the
precuneus has been ranked as the most pivotal region in the
population-based human cortical anatomical network in our
previous study (Gong et al., 2009), and an equivalent region to
the precuneus (i.e., area 7) was also observed as a hub
in the macaque cortical network (Sporns et al., 2007). Further-
more, the precuneus/posterior cingulate cortex plays a pivotal
role in the default mode network that represents intrinsic brain
activity (Fransson and Marrelec, 2008).

Age effect on regional efficiency
Both negative and positive age effects ( p � 0.05, FDR corrected)
were found on the integrated regional efficiency in selective cor-
tical regions across the cerebral cortex (29 in total) (Table 1). The
majority of these identified regions were distributed in associa-
tion cortex (20 of 29), supporting the view that age-related
changes are mainly characteristic of association cortex as op-
posed to primary cortex (Albert and Knoefel, 1994). It is noted
that the negative age effect was mainly localized to the regions in
the parietal and occipital neocortex (12 of 15), whereas the posi-
tive age effect concentrated on the regions in the frontal and
temporal cortex (Table 1, Fig. 6). Among these regions, four with
negative age effect (the precuneus, superior parietal gyrus, cu-
neus, and superior occipital gyrus) and five with positive age
effect (the orbital middle frontal gyrus, orbital superior frontal
gyrus, dorsolateral superior frontal gyrus, inferior temporal
gyrus, and middle temporal pole) appeared in a bilaterally sym-
metric manner. Particularly, prominent reduction of regional

Figure 4. The sex effect on the cost and efficiency of the cortical networks. A, Plots of the T statistic of sex effect on the network
cost, local efficiency, and global efficiency as a function of the sparsity. A significant women less than men effect was found on the
cost over the entire sparsity. Both local efficiency and global efficiency showed sex effect over a wide range of the sparsity. In
accordance, the integrated network cost (B), integrated local efficiency (C), and integrated global efficiency (D) all showed
significant sex effect. Notably, all results here were calculated after adjusting for the effects of brain size and age, using a general
linear model.
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efficiency in aging was observed in our identified hub regions
(i.e., the bilateral precuneus).

Sex effect on regional efficiency
Statistical analysis revealed significant sex difference ( p � 0.05,
FDR corrected) of the integrated regional efficiency in eight re-
gions predominantly in association cortex (seven of eight). Six of
them (left Heschl’s gyrus, superior temporal gyrus, superior pa-
rietal gyrus, inferior parietal gyrus, insula, and right fusiform

gyrus) have higher efficiency in women, but the other two (right
rolandic operculum and triangular inferior frontal gyrus)
showed higher efficiency in men (Table 2). These regions are
predominantly in association cortex, supporting the view that sex
cognitive differences mainly relate to higher level brain functions
(Hamilton, 2008).

Discussion
In this study, probabilistic tractography based on diffusion MRI
was used to construct weighted networks that represent the ana-
tomical connectivity organization of the human cerebral cortex
at a regional level. Additional network comparison among indi-
viduals revealed significant age and sex effect on the network cost,
network efficiency, and regional efficiency in selective cortical
regions.

Cortical networks are less economical in aging
Cost is a graph-theoretical concept derived by taking the sum of
the distance/weight within a graph (Latora and Marchiori, 2003).
In our study, higher values for distance/weight mean lower prob-
ability of fiber connection between the pairs of cortical nodes. As
shown in Figure 3, the network cost increases with age, corre-
sponding to a reduction in overall cortical connectivity. The ob-
servation that the aging network becomes less connected (costs
more) is expected, as previous studies have consistently demon-
strated extensive WM degeneration in aging brains (Head et al.,
2004; Pfefferbaum et al., 2005; Salat et al., 2005). The disruption

Figure 5. The integrated regional efficiency for all cortical regions. The cortical regions were
ranked in the order of descending mean integrated regional efficiency across subjects. The gray
bar represents the mean regional efficiency and each x mark corresponds to one subject. As
shown, the PUN and PCG always have the highest regional efficiencies, regardless age and sex.
For the abbreviations of cortical regions, see supplemental Table 1 (available at www.jneurosci.
org as supplemental material).

Table 1. Cortical regions showing significant age effect ( p < 0.05, FDR corrected)
on the integrated regional efficiency (Ereg )

Age effect on Ereg Regions Class T statistic

Negative effect
Frontal ROL.L Association �3.58
Temporal HES.L Primary �4.29

STG.L Association �3.18
Parietal PCUN.L Association �3.93

SPG.L Association �3.11
SPG.R Association �2.81
PCL.R Association �2.33
PCUN.R Association �2.32

Occipital CUN.R Association �6.40
CUN.L Association �3.65
SOG.R Association �3.20
CAL.R Primary �3.14
SOG.L Association �2.86
LING.R Association �2.42
IOG.R Association �2.39

Positive effect
Frontal ORBmid.L Paralimbic 3.76

SFGdor.L Association 3.49
ORBsup.R Paralimbic 3.20
ORBmid.R Paralimbic 3.09
SMA.L Association 2.29
ORBsup.L Paralimbic 2.59
IFGtriang.R Association 2.25
SFGdor.R Association 2.24

Temporal ITG.L Association 5.24
ITG.R Association 4.72
MTG.R Association 3.47
TPOsup.R Paralimbic 3.21
TPOmid.R Paralimbic 2.55
TPOmid.L Paralimbic 2.45

The significant cortical regions ( p � 0.05, FDR corrected) within each lobe were listed in descending order of the t
statistic of age effect in the general linear model. The regions were classified as primary, association, and paralimibic.
L and R represent left and right, respectively. For the abbreviations of cortical regions, see supplemental Table 1
(available at www.jneurosci.org as supplemental material).
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of anatomical connectivity in aging may impair the functional
integration between areas, eventually leading to selective cogni-
tive declines. In particular, Andrews-Hanna et al. (2007) have
demonstrated a direct relationship between the anatomical con-
nectivity and cognitive score in aging people, strongly supporting
the theory that cognitive deficit in aging arises from the “discon-
nection” of brain areas, in addition to selective GM dysfunction
(O’Sullivan et al., 2001).

The underlying organization of cortical network is adapted
in aging
Although the cortical networks retained small worldness regard-
less of age, the underlying organization of the cortical network
was adapted, resulting in a decreased overall local efficiency but a
preserved overall global efficiency in older people (Fig. 3). This is
compatible with a recent finding showing conserved modular
organization of the functional network but significant differences
in composition and topological roles of specific modules in the
aging brain (Meunier et al., 2009). Essentially, the network orga-
nizational change results from the differential decline and relative
preservation of specific regional anatomical connections in aging
brain. This interpretation is supported by recent DTI findings
showing an approximately anterior-to-posterior gradient of WM
degeneration in aging people (Head et al., 2004; Salat et al., 2005).
Particularly, our findings are consistent with a recent functional
network study showing reduced network efficiency of functional
networks in normal aging using resting-state functional MRI
techniques (Achard and Bullmore, 2007). The decreased local
efficiency of cortical anatomical networks found in this study
may provide the underlying substrate for the functional distur-
bance and cognitive deficit in aging.

Despite the preservation of overall global efficiency in aging,
the regional efficiency showed extensive changes across the cere-

Figure 6. The spatial distribution of cortical regions showing significant age effect ( p � 0.05, FDR corrected) on the integrated regional efficiency. The color represents t statistic of the age effect
that was calculated from the general linear model. Each identified region was marked out. Notably, negative age effect was mainly distributed in the parietal and occipital cortex (12 of 15), whereas
the positive age effect was localized only in the frontal and temporal cortex. Note that nine regions (the PUN, SPG, CUN, SOG, ORBmid, ORBsup, SFGdor, ITG, and TPOmid) appeared in a bilateral
manner. For the abbreviations of cortical regions, see supplemental Table 1 (available at www.jneurosci.org as supplemental material).

Table 2. Cortical regions showing significant sex effect ( p < 0.05, FDR corrected)
on the integrated regional efficiency

Sex effect on Ereg Region Class T statistic

Women � men
Temporal HES.L Primary 3.07

STG.L Association 2.65
Parietal SPG.L Association 2.97

IPL.L Association 2.88
Occipital FFG.R Association 2.97
Insula INS.L Association 3.34

Women � men
Frontal ROL.R Association �3.34

IFGtriang.R Association �2.85

Cortical regions showing significant sex effect on the integrated regional efficiency ( p � 0.05, FDR corrected)
were listed. L and R represent left and right, respectively. For the abbreviations of cortical regions, see
supplemental Table 1 (available at www.jneurosci.org as supplemental material).
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bral cortex in aging. As shown in Table 1 and Figure 6, reduced
efficiency was found in 15 cortical regions predominantly in the
parietal and occipital neocortex. In contrast, 14 regions localized
to frontal and temporal cortex showed increased efficiency, indi-
cating a putative compensation mechanism of cortical network
reorganization in aging (Park and Reuter-Lorenz, 2009). Specif-
ically, several regions (e.g., the Heschl’s gyrus and superior tem-
poral gyrus) consistently exhibited a reduction of regional
efficiency both in our anatomical network and in the functional
network (Achard and Bullmore, 2007). Of note, previous func-
tional neuroimaging studies of aging have repeatedly revealed
reduced occipital activity coupled with an elevation in frontal
activity across a variety of cognitive functions. This phenomena
was referred to as PASA (posterior–anterior shift in aging) (Davis
et al., 2008). Likewise, the regional efficiency changes exhibited a
clear shift from occipital and parietal to frontal and temporal
cortices, possibly accounting for the shift pattern of functional
reorganization in older people. In addition, our results suggested
no direct relationship between the neuroanatomical deficit and
the efficiency changes, at the regional level. For example, pre-
vious studies reported preferential age-related atrophy in the
prefrontal cortex (Raz et al., 2005), whereas, in the present
study, increased regional efficiency was found in this area.
Conceptually, regional efficiency is based on the cortical con-
nectivity pattern and therefore biologically depends on the
axonal properties across the cerebral cortex. In contrast, re-
gional neuroanatomical deficit (e.g., atrophy) typically reflects lo-
cally neuronal body declines in GM. Thus, it is unexpected to predict
the regional efficiency change directly from its neuroanatomical
deficit. However, we cannot rule out the possibility that specific
neuroanatomical deficit is associated with the regional efficiency
in some way.

Cortical networks are less economical in men
In addition to the age-related network changes, we found the
cortical network is less economical (costs more) in men than in
women, corresponding to a higher overall cortical connectivity of
women. In accordance with our findings, previous studies have
suggested a female advantage in cortical anatomical connectivity.
For instance, a larger corpus callosum in women, after adjust-
ing for the brain size, was repeatedly found (Allen et al., 2003;
Leonard et al., 2008), suggesting greater interhemispheric
connectivity and possibly accounting for the more bilateral
pattern in language-related activation of women (Baxter et al.,
2003). Recently, a DTI study revealed greater fractional anisot-
ropy and leftward asymmetry of frontal lobe WM in women,
indicating either denser or better packed axons in that area
(Szeszko et al., 2003).

The underlying organization of cortical network is different
between men and women
The present study also revealed sex differences in the underlying
organization of the cortical networks. Specifically, women
showed both higher overall global and local efficiency (Fig. 4).
Using MRI, Gur et al. (1999) found a stronger association be-
tween cognitive performance and WM volume in women, and
have therefore suggested the possibility that women may make
more efficient use of the available WM. Using network efficiency
indices, our study provides direct evidence for this hypothesis.
However, the higher percentage of GM in women represents a
computational advantage that requires effective signal transfer
(Gur et al., 1999; Leonard et al., 2008). This requirement may be
achieved by the more optimal anatomical organization coupled

with the stronger cortical connectivity in women (Fig. 4). How-
ever, the disadvantage of overall anatomical connectivity pattern
does not necessarily mean men’s worse performance for all cog-
nitive tasks. The submodular organization for specific functional
domains may exhibit optimized patterns in men, leading to their
better performance in corresponding cognitive tasks. In addition,
other mechanisms such as area-specific GM differences are likely
invoked to account for the sex differences in particular cognitive
performance (Hamilton, 2008).

Likewise, the sex effect was further localized in terms of re-
gional efficiency (Table 2). Of note, the sex differences in re-
gional efficiency exhibited a clear hemispheric asymmetry:
women had higher efficiency in five left-hemispheric and one
right-hemispheric regions, but men had higher efficiency only in
two right-hemispheric regions. Given that the left hemisphere is
generally dominant in verbal and the right in spatial processing
(Springer and Deutsch, 1997), this asymmetry of regional effi-
ciency may underlie women’s advantageous verbal processing
and men’s advantageous spatial processing (Hamilton, 2008). In
particular, two well recognized language-related regions (i.e., left
superior temporal gyrus and Heschl’s gyrus) showed greater ef-
ficiency in women, which may directly contribute to the previ-
ously observed female advantage in language (Hamilton, 2008).
Unexpectedly, we did not observe men’s higher efficiency in
visuospatial processing regions (e.g., right superior parietal gy-
rus), as has been previously reported (Zarahn et al., 2000). The
visuospatial performance has shown a positive correlation with
rightward laterality of related brain regions (Everts et al., 2009).
Interestingly, we found less efficiency of left superior parietal
gyrus in men, indicating a rightward laterality of this region and
possibly underlying the men’s advantage in visuospatial function.
The sex differences in regional efficiency provide a new insight
into our understanding of the functional and cognitive specificity
between women and men.

Methodological issues
Several methodological issues need to be addressed. First, the
probabilistic tractography used in our study has showed advan-
tages in tracking specific WM tracts relating to fiber crossing
(Behrens et al., 2007). However, it remains possible that we
missed some biological connections or included spurious con-
nections in the cortical network even after the thresholding pro-
cedure. Second, we confined the weighted network to the cerebral
cortical system in current study. The deep GM structures such as
the striatum and thalamus will be included in future. Third, the
present study included only anatomical network analysis using
diffusion MRI. It would be intriguing in future to explore how
the anatomical network changes in aging are associated with
the alteration of morphological/functional brain networks, by
combining structural MRI and functional MRI. Finally, the age-
related cortical network changes in our study were found using
cross-sectional data and therefore could be influenced by poten-
tial cohort effects. The longitudinal network dynamics need to be
examined in the future.

Conclusion
Our study revealed significant age- and sex-related effects on
the underlying organization of the cortical anatomical net-
work, as well as on the overall anatomical connectivity within
the cerebral cortex. These findings provide new insights into
the substrate that underlies the behavioral and cognitive vari-
ability in aging and sex. The present study, for the first time,
reveals the dynamics of the cortical anatomical connectivity
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patterns across a population and provides a new way to eval-
uate the impairment of anatomical connectivity patterns for
specific brain disorders.
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